With the latest release of MongoDB Charts, you’re now able to dive deeper into the data that’s aggregated in your visualizations. At a high level, we generally create charts, graphs and visualizations of our data to answer questions about our business or products. Oftentimes, we need to “double click” on those visualizations to get insight into each individual data point that makes up the line, bar, column, etc.
How the drill-down functionality works:
Step 1: Right click on the data point you are interested in drilling down into
Step 2: Click "show data for this item"
Step 3: View the data in tabular or document format
- Each view can be better for different circumstances. For data without too many fields or no nested arrays, it might be quicker and more easily viewed in a table. On the other hand, the JSON view allows you to explore the structure of documents and click into arrays.
Scenarios where more detailed information can help:
Data visualization use cases are relatively broad spanning, but oftentimes they fall into 3 main categories: monitoring data, finding insights, and embedding analytics into applications. I’ll be focusing on the first two of these three as there are many different ways you could potentially build drilling-down into data via embedded charts. (Read more about our click events and embedded analytics).
For data or performance monitoring purposes, we're not speaking so much about the performance of your actual database and its underlying infrastructure, but the performance of the application or system built on top of the database.
Imagine I have an application or website that takes reviews, if I build a chart like the one below where I want to easily see when an interaction hits a threshold that I want to dive deeper into, I now have the ability to quickly see the document that created that data point. This chart shows app ratings given after a user session in an app. For this example, we want to dive into any rating that was below a 3 (out of 5). This scatter plot shows I have two such ratings that cross that threshold. With the drill-down capability, I can easily see all the details captured in that user session.
For finding new insights, let’s imagine I’m tracking how many transactions happen on my ecommerce site over time. In the column chart below, you can see I have purchases by month for the last year and a half (note, there’s a gap because this example is for a seasonal business!). Just by glancing at the chart, I can quickly see purchases have increased over time, and my in-app purchases have increased my overall sales. However, I want to see more about the documents that were aggregated to create those columns, so I can quickly see details about the transaction amount and location without needing to create another chart or dashboard filter.
In both examples, I was able to answer a deeper level question that the original chart couldn’t answer on it’s own. We hope this new feature helps you and your stakeholders get more out of MongoDB Charts, regardless if you’re new to it or have been visualizing your Atlas data with it for months, if not years!
If you haven’t tried Charts yet, you can get started for free by signing up for a MongoDB Atlas and deploying a free tier cluster.